Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Microorganisms ; 12(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674784

RESUMO

Representatives of the genus Bifidobacterium are widely used as probiotics to modulate the gut microbiome and alleviate various health conditions. The action mechanisms of probiotics rely on their direct effect on the gut microbiota and the local and systemic effect of its metabolites. The main purpose of this animal experiment was to assess the biosafety of the Bifidobacterium longum strain BIOCC1719. Additional aims were to characterise the influence of the strain on the intestinal microbiota and the effect on several health parameters of the host during 15- and 30-day oral administration of the strain to mice. The strain altered the gut microbial community, thereby altering luminal short-chain fatty acid metabolism, resulting in a shift in the proportions of acetic, butyric, and propionic acids in the faeces and serum of the test group mice. Targeted metabolic profiling of serum revealed the possible ability of the strain to positively affect the hosts' amino acids and bile acids metabolism, as the cholic acid, deoxycholic acid, aspartate, and glutamate concentration were significantly higher in the test group. The tendency to increase anti-inflammatory polyamines (spermidine, putrescine) and neuroprotective 3-indolepropionic acid metabolism and to lower uremic toxins (P-cresol-SO4, indoxyl-SO4) was registered. Thus, B. longum BIOCC1719 may exert health-promoting effects on the host through modulation of the gut microbiome and the host metabolome via inducing the production of health-promoting bioactive compounds. The health effects of the strain need to be confirmed in clinical trials with human volunteers.

2.
Metabolites ; 14(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38392981

RESUMO

This study investigated whether metabolomic fingerprints of bovine embryo growth media improve the prediction of successful embryo implantation. In this prospective cohort study, the metabolome from in vitro-produced day 7 blastocysts with successful implantation (n = 11), blastocysts with failed implantation (n = 10), and plain culture media without embryos (n = 5) were included. Samples were analyzed using an AbsoluteIDQ® p180 Targeted Metabolomics Kit with LC-MS/MS, and a total of 189 metabolites were analyzed from each sample. Blastocysts that resulted in successful embryo implantation had significantly higher levels of methionine sulfoxide (p < 0.001), DOPA (p < 0.05), spermidine (p < 0.001), acetylcarnitine-to-free-carnitine ratio (p < 0.05), C2 + C3-to-free-carnitine ratio (p < 0.05), and lower levels of threonine (nep < 0.001) and phosphatidylcholine PC ae C30:0 (p < 0.001) compared to control media. However, when compared to embryos that failed to implant, only DOPA, spermidine, C2/C0, (C2 + C3)/C0, and PC ae C30:0 levels differentiated significantly. In summary, our study identifies a panel of differential metabolites in the culture media of bovine blastocysts that could act as potential biomarkers for the selection of viable blastocysts before embryo transfer.

3.
Microorganisms ; 12(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38258000

RESUMO

Postbiotics are gaining increasing interest among the scientific community as well as at the level of food processing enterprises. The aim of this preliminary study was to characterise the metabolic diversity of a novel Bifidobacterium longum strain, BIOCC 1719, of human origin. The change after 24 h cultivation in three media was assessed using a metabolomic approach. Milk-based substrates favoured the activity of the strain, promoting the production of B vitamins, essential amino acids, bile acids, and fatty acids. Vitamins B1, B2, B6, B7, and B12 (with an average increase of 20-30%) were produced in both whole milk and whey; the increased production in the latter was as high as 100% for B7 and 744% for B12. The essential amino acids methionine and threonine were produced (>38%) in both milk and whey, and there was an increased production of leucine (>50%) in milk and lysine (126%) in whey. Increases in the content of docosahexaenoic acid (DHA) by 20%, deoxycholic acid in milk and whey (141% and 122%, respectively), and cholic acid (52%) in milk were recorded. During the preliminary characterisation of the metabolic diversity of the novel B. longum strain, BIOCC 1719, we identified the bioactive compounds produced by the strain during fermentation. This suggests its potential use as a postbiotic ingredient to enrich the human diet.

4.
Clin Chem Lab Med ; 62(3): 442-452, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-37776061

RESUMO

OBJECTIVES: The aim of the study was to determine the diagnostic performance of novel automated red cell parameters for estimating bone marrow iron stores. METHODS: The study was a retrospective single-centre study based on data from an automated haematology analyser and results of bone marrow iron staining. Red cell parameters were measured on a Sysmex XN-series haematology analyser. Bone marrow iron stores were assessed semiquantitatively by cytochemical reaction according to Perls. RESULTS: The analysis included 429 bone marrow aspirate smears from 393 patients. Median age of patients was 67 years, 52 % of them were female. The most common indication for bone marrow examination was a plasma cell dyscrasia (n=104; 24 %). Median values of percentage of hypochromic and hyperchromic red blood cells (%HYPO-He, %HYPER-He), reticulocyte haemoglobin equivalent (RET-He) and microcytic red blood cells (MicroR) were statistically significantly different between cases with iron deplete and iron replete bone marrow. In a logistic regression model, ferritin was the best predictor of bone marrow iron stores (AUC=0.891), outperforming RET-He and %HYPER-He (AUC=0.736 and AUC=0.722, respectively). In a combined model, ferritin/MicroR index achieved the highest diagnostic accuracy (AUC=0.915), outperforming sTfR/log ferritin index (AUC=0.855). CONCLUSIONS: While single automated red cell parameters did not show improved diagnostic accuracy when compared to traditional iron biomarkers, a novel index ferritin/MicroR has the potential to outperform ferritin and sTfR/log ferritin index for predicting bone marrow iron stores. Further research is needed for interpretation and implementation of novel parameters and indices, especially in the context of unexplained anaemia and myelodysplastic syndromes.


Assuntos
Anemia Ferropriva , Humanos , Feminino , Idoso , Masculino , Anemia Ferropriva/diagnóstico , Medula Óssea , Estudos Retrospectivos , Ferro/metabolismo , Ferritinas , Hemoglobinas/análise
5.
Psychiatry Res ; 328: 115423, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37639988

RESUMO

The aim of this study was to evaluate how schizophrenia spectrum disorders (SSD) and applied long-term (5.1 years) antipsychotic (AP) treatment affect the serum levels of tryptophan (Trp) metabolites. A total of 112 adults (54 first-episode psychosis [FEP] patients and 58 control subjects [CSs]) participated in the study. The investigated changes in the metabolite levels appeared against a background of persistent increase in BMI and waist circumference among the patients. Regarding the kynurenine (KYN) pathway, the strongest changes were seen in AP-naïve FEP patients. Trp, KYN, kynurenic acid (KYNA), and anthranilic acid (ANT) levels were significantly reduced in blood samples from patients in the early stage of the disease. Furthermore, 3-OH-kynurenine (3-HK) and quinolinic acid (QUIN) levels were somewhat lower in these patients. Most of these changes in the KYN pathway became weaker with AP treatment. The levels of serotonin and its metabolite 5-HIAA tended to be higher at 5.1 years in patients showing the relation of elevated serotonin turnover to increased BMI and waist circumference. The similar trend was evident for the ratio between xanthurenic acid (XA) and KYNA with strong link to the elevated BMI. Altogether, the present study supports the role of Trp-metabolites in the development of obesity and metabolic syndrome in SSD patients.

6.
Metabolites ; 13(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37512563

RESUMO

Remote ischemic preconditioning (RIPC) has demonstrated protective effects in patients with lower extremity arterial disease (LEAD) undergoing digital subtraction angiography (DSA) and/or percutaneous transluminal angioplasty (PTA). This study aimed to investigate the impact of RIPC on the metabolomical profile of LEAD patients undergoing these procedures and to elucidate its potential underlying mechanisms. A total of 100 LEAD patients were enrolled and randomly assigned to either the RIPC group (n = 46) or the sham group (n = 54). Blood samples were drawn before and 24 h after intervention. Targeted metabolomics analysis was performed using the AbsoluteIDQ p180 Kit, and changes in metabolite concentrations were compared between the groups. The RIPC group demonstrated significantly different dynamics in nine metabolites compared to the sham group, which generally showed a decrease in metabolite concentrations. The impacted metabolites included glutamate, taurine, the arginine-dimethyl-amide-to-arginine ratio, lysoPC a C24:0, lysoPC a C28:0, lysoPC a C26:1, PC aa C38:1, PC ae C30:2, and PC ae C44:3. RIPC exhibited a 'stabilization' effect, maintaining metabolite levels amidst ischemia-reperfusion injuries, suggesting its role in enhancing metabolic control. This may improve outcomes for LEAD patients. However, additional studies are needed to definitively establish causal relationships among these metabolic changes.

7.
Hepatol Commun ; 7(4)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36930872

RESUMO

BACKGROUND: NAFLD has become the leading cause of chronic liver disease worldwide afflicting about one quarter of the adult population. NASH is a severe subtype of NAFLD, which in addition to hepatic steatosis connotes liver inflammation and hepatocyte ballooning. In light of the exponentially increasing prevalence of NAFLD, it is imperative to gain a better understanding of its molecular pathogenesis. The aim of this study was to examine the potential role of STE20-type kinase TAOK1 -a hepatocellular lipid droplet-associated protein-in the regulation of liver lipotoxicity and NAFLD etiology. METHODS: The correlation between TAOK1 mRNA expression in liver biopsies and the severity of NAFLD was evaluated in a cohort of 62 participants. Immunofluorescence microscopy was applied to describe the subcellular localization of TAOK1 in human and mouse hepatocytes. Metabolic reprogramming and oxidative/endoplasmic reticulum stress were investigated in immortalized human hepatocytes, where TAOK1 was overexpressed or silenced by small interfering RNA, using functional assays, immunofluorescence microscopy, and colorimetric analysis. Migration, invasion, and epithelial-mesenchymal transition were examined in TAOK1-deficient human hepatoma-derived cells. Alterations in hepatocellular metabolic and pro-oncogenic signaling pathways were assessed by immunoblotting. RESULTS: We observed a positive correlation between the TAOK1 mRNA abundance in human liver biopsies and key hallmarks of NAFLD (i.e., hepatic steatosis, inflammation, and ballooning). Furthermore, we found that TAOK1 protein fully colocalized with intracellular lipid droplets in human and mouse hepatocytes. The silencing of TAOK1 alleviated lipotoxicity in cultured human hepatocytes by accelerating lipid catabolism (mitochondrial ß-oxidation and triacylglycerol secretion), suppressing lipid anabolism (fatty acid influx and lipogenesis), and mitigating oxidative/endoplasmic reticulum stress, and the opposite changes were detected in TAOK1-overexpressing cells. We also found decreased proliferative, migratory, and invasive capacity, as well as lower epithelial-mesenchymal transition in TAOK1-deficient human hepatoma-derived cells. Mechanistic studies revealed that TAOK1 knockdown inhibited ERK and JNK activation and repressed acetyl-CoA carboxylase (ACC) protein abundance in human hepatocytes. CONCLUSIONS: Together, we provide the first experimental evidence supporting the role of hepatic lipid droplet-decorating kinase TAOK1 in NAFLD development through mediating fatty acid partitioning between anabolic and catabolic pathways, regulating oxidative/endoplasmic reticulum stress, and modulating metabolic and pro-oncogenic signaling.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Proteínas Serina-Treonina Quinases , Animais , Humanos , Camundongos , Ácidos Graxos , Inflamação , Metabolismo dos Lipídeos/genética , Neoplasias Hepáticas/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/metabolismo , Triglicerídeos/metabolismo , Inativação Gênica
8.
ERJ Open Res ; 9(1)2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36632170

RESUMO

Background: The apnoea-hypopnoea index (AHI) forms the basis for severity of obstructive sleep apnoea (OSA), a condition expected to reprogramme metabolic pathways in humans. We aimed to identify the AHI breakpoint from which the majority of significant changes in the systemic metabolome of patients with sleep complaints occur. Methods: In a prospective observational study on symptomatic individuals, who underwent polysomnography for the diagnosis of OSA, profiles of 187 metabolites including amino acids, biogenic amines, acylcarnitines, lysophosphatidylcholines, phosphatidylcholines and sphingomyelins were analysed with liquid chromatography mass spectrometry in peripheral blood drawn at three different time points overnight. Comparisons of rank-transformed data using a general linear model for repeated measures after dichotomising the study group at different AHI levels were applied to define the best cut-off based on Cohen's f. Results: 65 subjects were recruited with a median AHI of 15.6 events·h-1. The mean Cohen's f over the metabolites was highest (0.161) at an AHI level of 5 events·h-1 representing the metabolomic threshold. Of the particular between-group differences, eight phosphatidylcholines, nine acylcarnitines and one amino acid (threonine) had significantly lower concentrations in the individuals with an AHI level equal to or above the metabolomic threshold. The metabolomic changes at AHI levels defining moderate and severe OSA were smaller than at an AHI of 5 events·h-1. Conclusions: The metabolomic threshold for patients with sleep complaints described in this report for the first time coincides with the AHI threshold required to confirm the diagnosis of OSA.

9.
J Exp Bot ; 74(3): 889-908, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36433902

RESUMO

Methyl jasmonate (MeJA) induces various defence responses in seed plants, but for early plant lineages, information on the potential of jasmonates to elicit stress signalling and trigger physiological modifications is limited. The spikemoss Selaginella martensii was exposed to a range of MeJA concentrations (0, 10, 25, and 50 mM), and biogenic volatile organic compound (BVOC) emissions, photosynthetic rate (A), and stomatal conductance (gs) were continuously measured. In addition, changes in phytohormone concentrations and gene expression were studied. Enhancement of methanol, lipoxygenase pathway volatiles and linalool emissions, and reductions in A and gs, were MeJA dose-dependent. Before MeJA treatment, the concentration of 12-oxo-phytodienoic acid (OPDA) was 7-fold higher than jasmonic acid (JA). MeJA treatment rapidly increased OPDA and JA concentrations (within 30 min), with the latter more responsive. Some genes involved in BVOC biosynthesis and OPDA-specific response were up-regulated at 30 min after MeJA spraying, whereas those in the JA signalling pathway were not affected. Although JA was synthesized in S. martensii, OPDA was prioritized as a signalling molecule upon MeJA application. MeJA inhibited primary and enhanced secondary metabolism; we propose that fast-emitted linalool could serve as a marker of elicitation of stress-induced metabolism in lycophytes.


Assuntos
Reguladores de Crescimento de Plantas , Selaginellaceae , Reguladores de Crescimento de Plantas/metabolismo , Selaginellaceae/genética , Selaginellaceae/metabolismo , Transcriptoma , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Acetatos/farmacologia , Acetatos/metabolismo
10.
Brain Sci ; 12(12)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36552158

RESUMO

In GWAS studies, the neural adhesion molecule encoding the neuronal growth regulator 1 (NEGR1) gene has been consistently linked with both depression and obesity. Although the linkage between NEGR1 and depression is the strongest, evidence also suggests the involvement of NEGR1 in a wide spectrum of psychiatric conditions. Here we show the expression of NEGR1 both in tyrosine- and tryptophan hydroxylase-positive cells. Negr1-/- mice show a time-dependent increase in behavioral sensitization to amphetamine associated with increased dopamine release in both the dorsal and ventral striatum. Upregulation of transcripts encoding dopamine and serotonin transporters and higher levels of several monoamines and their metabolites was evident in distinct brain areas of Negr1-/- mice. Chronic (23 days) escitalopram-induced reduction of serotonin and dopamine turnover is enhanced in Negr1-/- mice, and escitalopram rescued reduced weight of hippocampi in Negr1-/- mice. The current study is the first to show alterations in the brain monoaminergic systems in Negr1-deficient mice, suggesting that monoaminergic neural circuits contribute to both depressive and obesity-related phenotypes linked to the human NEGR1 gene.

11.
Metabolites ; 12(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36295885

RESUMO

The objective of this study was to evaluate how schizophrenia spectrum disorders and applied long-term (5.1 years) antipsychotic (AP) treatment affect the serum level of acylcarnitines (ACs), cytokines and metabolic biomarkers and to characterize the dynamics of inflammatory and metabolic changes in the early course of the disorder. A total of 112 adults participated in the study (54 patients with first-episode psychosis (FEP) and 58 control subjects). Biomolecule profiles were measured at the onset of first-episode psychosis and 0.6 years and 5.1 years after the initiation of APs. The results of the present study confirmed that specific metabolic-inflammatory imbalance characterizes AP-naïve patients. Short-term (0.6-years) AP treatment has a favourable effect on psychotic symptoms, as well as the recovery of metabolic flexibility and resolution of low-level inflammation. However, 5.1 years of AP treatment resulted in weight gain and increased serum levels of interleukin (IL)-2, IL-4, IL-6, IL-10, interferon-γ, hexoses, acetylcarnitine, short-chain ACs (C3, C4) and long-chain ACs (C16:2, C18:1, C18:2). In conclusion, despite the improvement in psychotic symptoms, 5.1 years of AP treatment was accompanied by a pronounced metabolic-inflammatory imbalance, which was confirmed by the presence of enhanced pro-inflammatory activity and increased obesity with changes in the metabolism of carbohydrates, lipids, and their metabolites.

12.
Biomolecules ; 12(9)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139151

RESUMO

BACKGROUND: remote ischemic preconditioning (RIPC) is a phenomenon in which short episodes of ischemia are applied to distant organs to prepare target organs for more prolonged ischemia and to induce protection against ischemia-reperfusion injury. This study aims to evaluate whether preoperatively performed RIPC affects the metabolome and to assess whether metabolomic changes correlate with heart and kidney injury markers after vascular surgery. METHODS: a randomized sham-controlled, double-blinded trial was conducted at Tartu University Hospital. Patients undergoing elective open vascular surgery were recruited and RIPC was applied before operation. Blood was collected preoperatively and 24 h postoperatively. The metabolome was analyzed using the AbsoluteIDQ p180 Kit. RESULTS: final analysis included 45 patients from the RIPC group and 47 from the sham group. RIPC did not significantly alter metabolites 24 h postoperatively. There was positive correlation of change in the kynurenine/tryptophan ratio with change in hs-troponin T (r = 0.570, p < 0.001), NT-proBNP (r = 0.552, p < 0.001), cystatin C (r = 0.534, p < 0.001) and beta-2-microglobulin (r = 0.504, p < 0.001) only in the RIPC group. CONCLUSIONS: preoperative RIPC did not significantly affect the metabolome 24 h after vascular surgery. The positive linear correlation of kynurenine/tryptophan ratio with heart and kidney injury markers suggests that the kynurenine-tryptophan pathway can play a role in RIPC-associated cardio- and nephroprotective effects.


Assuntos
Precondicionamento Isquêmico , Procedimentos Cirúrgicos Vasculares , Humanos , Biomarcadores , Cistatina C , Cinurenina , Metaboloma , Troponina T , Triptofano
13.
Biomedicines ; 10(2)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35203453

RESUMO

Alterations in the expanded endocannabinoid system (eECS) and cell membrane composition have been implicated in the pathophysiology of schizophrenia spectrum disorders. We enrolled 54 antipsychotic (AP)-naïve first-episode psychosis (FEP) patients and 58 controls and applied a targeted metabolomics approach followed by multivariate data analysis to investigate the profile changes in the serum levels of endocannabinoids: 2-arachidonoylglycerol (2-AG) and anandamide, endocannabinoids-like N-acylethanolamines (NAEs: linoleoylethanolamide, oleoylethanolamide, and palmitoylethanolamide), and their dominating lipid precursor's phosphatidylcholines. Biomolecule profiles were measured at the onset of first-episode psychosis (FEP) and 0.6 years and 5.1 years after the initiation of AP treatment. The results indicated that FEP might be characterized by elevated concentrations of NAEs and by decreased 2-AG levels. At this stage of the disease, the NAE-mediated upregulation of peroxisome proliferator-activated receptors (PPARs) manifested themselves in energy expenditure. A 5-year disease progression and AP treatment adverse effects led to a robust increase in 2-AG levels, which contributed to strengthened cannabinoid (CB1) receptor-mediated effects, which manifested in obesity. Dynamic 2-AG, NAEs, and their precursors in terms of phosphatidylcholines are relevant to the description of the metabolic shifts resulting from the altered eECS function during and after FEP.

14.
Biomedicines ; 9(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34572334

RESUMO

In the large GWAS studies, NEGR1 gene has been one of the most significant gene loci for body mass phenotype. The purpose of the current study was to clarify the role of NEGR1 in the maintenance of systemic metabolism, including glucose homeostasis, by using both male and female Negr1-/- mice receiving a standard or high fat diet (HFD). We found that 6 weeks of HFD leads to higher levels of blood glucose in Negr1-/- mice. In the glucose tolerance test, HFD induced phenotype difference only in male mice; Negr1-/- male mice displayed altered glucose tolerance, accompanied with upregulation of circulatory branched-chain amino acids (BCAA). The general metabolomic profile indicates that Negr1-/- mice are biased towards glyconeogenesis, fatty acid synthesis, and higher protein catabolism, all of which are amplified by HFD. Negr1 deficiency appears to induce alterations in the efficiency of energy storage; reduced food intake could be an attempt to compensate for the metabolic challenge present in the Negr1-/- males, particularly during the HFD exposure. Our results suggest that the presence of functional Negr1 allows male mice to consume more HFD and prevents the development of glucose intolerance, liver steatosis, and excessive weight gain.

15.
Sci Rep ; 11(1): 10811, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031438

RESUMO

There are no clinical studies that have investigated the differences in blood serum metabolome between obstructive sleep apnea (OSA) patients and controls. In a single-center prospective observational study, we compared metabolomic profiles in the serum of OSA patients with apnea-hypopnea index (AHI) ≥ 15/h and control individuals. Peripheral blood was obtained at 3 different time points overnight: 9:00 p.m.; 5:00 a.m. and 7:00 a.m. We used a targeted approach for detecting amino acids and biogenic amines and analyzed the data with ranked general linear model for repeated measures. We recruited 31 patients with moderate-to-severe OSA and 32 controls. Significant elevations in median concentrations of alanine, proline and kynurenine in OSA patients compared to controls were detected. Significant changes in the overnight dynamics of serum concentrations occurred in OSA: glutamine, serine, threonine, tryptophan, kynurenine and glycine levels increased, whereas a fall occurred in the same biomarker levels in controls. Phenylalanine and proline levels decreased slightly, compared to a steeper fall in controls. The study indicates that serum profiles of amino acid and biogenic amines are significantly altered in patients with OSA referring to vast pathophysiologic shifts reflected in the systemic metabolism.


Assuntos
Aminoácidos/sangue , Aminas Biogênicas/sangue , Metabolômica/métodos , Apneia Obstrutiva do Sono/sangue , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Polissonografia , Estudos Prospectivos , Índice de Gravidade de Doença
16.
Metabolites ; 10(5)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423141

RESUMO

The search for novel metabolic biomarkers is intense but has had limited practical outcomes for medicine. Part of the problem is that we lack knowledge of how different comorbidities influence biomarkers' performance. In this study, 49 metabolites were measured by targeted LC/MS protocols in the serum of 1011 volunteers. Their performance as potential biomarkers was evaluated by the area under the curve of receiver operator characteristics (AUC-ROC) for 105 diagnosis codes or code groups from the 10th revision of the international classification of diseases (ICD-10). Additionally, the interferences between diagnosis codes were investigated. The highest AUC-ROC values for individual metabolites and ICD-10 code combinations reached a moderate (0.7) range. Most metabolites that were found to be potential markers remained so independently of the control group composition or comorbidities. The precise value of the AUC-ROC, however, could vary depending on the comorbidities. Moreover, networks of metabolite and disease associations were built in order to map diseases, which may interfere with metabolic biomarker research on other diseases.

18.
OMICS ; 23(6): 300-307, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31120384

RESUMO

Rare diseases occur with a frequency ≤1:1500-1:2500 depending on the location and applicable definitions across countries. Although individually rare, they collectively affect as much as 4-8% of population imposing a large burden on public health. Rarity in prevalence means prolonged path to accurate diagnosis, lack of treatment options, and also limited chances for preclinical studies of pathogenesis. I discuss in this expert review (1) what metabolomics, as a high throughput systems sciences technology, offers for rare disease studies, (2) why animal models are important for the study of rare human diseases and what should be kept in mind while using animal models, and finally, (3) provide examples of recent research to highlight how metabolomics on animal models of rare diseases perform, and how these results can lead to the knowhow, which raises genome, metabolome, and phenotype integration to a whole new level. In sum, metabolomics has been for years in clinical use for diagnosis of certain types of rare diseases. Determination of pathogenesis of more complex diseases and testing of treatment strategies is where animal models and systems biology analytical approaches are necessary. From gathered data, it is possible to go back to diagnostic and prognostic markers for rare diseases, which so far lack reliable and robust diagnosis and therapeutic options. In the future, a major challenge is to reveal the links between genotype, metabolism, and phenotype. Rare diseases could be the key in that process.


Assuntos
Metabolômica/métodos , Animais , Biomarcadores , Humanos , Modelos Animais , Doenças Raras , Biologia de Sistemas
19.
Toxins (Basel) ; 11(2)2019 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-30744127

RESUMO

The potentially self-poisonous toxin-antitoxin modules are widespread in bacterial chromosomes, but despite extensive studies, their biological importance remains poorly understood. Here, we used whole-cell proteomics to study the cellular effects of the Pseudomonas putida toxin GraT that is known to inhibit growth and ribosome maturation in a cold-dependent manner when the graA antitoxin gene is deleted from the genome. Proteomic analysis of P. putida wild-type and ΔgraA strains at 30 °C and 25 °C, where the growth is differently affected by GraT, revealed two major responses to GraT at both temperatures. First, ribosome biogenesis factors, including the RNA helicase DeaD and RNase III, are upregulated in ΔgraA. This likely serves to alleviate the ribosome biogenesis defect of the ΔgraA strain. Secondly, proteome data indicated that GraT induces downregulation of central carbon metabolism, as suggested by the decreased levels of TCA cycle enzymes isocitrate dehydrogenase Idh, α-ketoglutarate dehydrogenase subunit SucA, and succinate-CoA ligase subunit SucD. Metabolomic analysis revealed remarkable GraT-dependent accumulation of oxaloacetate at 25 °C and a reduced amount of malate, another TCA intermediate. The accumulation of oxaloacetate is likely due to decreased flux through the TCA cycle but also indicates inhibition of anabolic pathways in GraT-affected bacteria. Thus, proteomic and metabolomic analysis of the ΔgraA strain revealed that GraT-mediated stress triggers several responses that reprogram the cell physiology to alleviate the GraT-caused damage.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Pseudomonas putida/metabolismo , Antitoxinas/genética , Ciclo do Ácido Cítrico , Metaboloma , Proteoma , Pseudomonas putida/crescimento & desenvolvimento , Proteínas Ribossômicas/metabolismo
20.
Reprod Fertil Dev ; 31(2): 306-314, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30092912

RESUMO

Selecting high-quality embryos for transfer has been a difficult task when producing bovine embryos invitro. The most used non-invasive method is based on visual observation. Molecular characterisation of embryo growth media has been proposed as a complementary method. In this study we demonstrate a culture medium sampling method for identifying potential embryonic viability markers to predict normal or abnormal embryonic development. During single embryo culture, 20µL culture media was removed at Days 2, 5 and 8 after fertilisation from the same droplet (60µL). In all, 58 samples were analysed using liquid chromatography-mass spectrometry. We demonstrate that it is possible to remove samples from the same culture medium droplets and not significantly affect blastocyst rate (25.2%). Changes in any single low molecular weight compound were not predictive enough. Combining multiple low molecular weight signals made it possible to predict Day 2 and 5 embryo development to the blastocyst stage with an accuracy of 64%. Elevated concentrations of lysophosphatidylethanolamines (m/z=453, 566, 588) in the culture media of Day 8 well-developing embryos were observed. Choline (104m/z) and citrate (215m/z) concentrations were increased in embryos in which development was retarded. Metabolic profiling provides possibilities to identify well-developing embryos before transfer, thus improving pregnancy rates and the number of calves born.


Assuntos
Blastocisto/metabolismo , Técnicas de Cultura Embrionária/veterinária , Metaboloma , Animais , Bovinos , Meios de Cultura , Transferência Embrionária/veterinária , Desenvolvimento Embrionário/fisiologia , Feminino , Espectrometria de Massas , Metabolômica , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA